
ECE 763 Project 1 Arpad Voros

1 Introduction

In this document, we will attempt to create a face image classifier by using various machine
learning models. All models are created from scratch using MATLAB. The models being
discussed are a Gaussian model, a Gaussian mixture model (GMM), a Student’s t-Distribution
model, a Student’s t-Distribution mixture model, as well as a factor analysis model. Images
being read are in the JPG format, vary in size but are always square, 3 RGB channels, using
the face database founds here - (http://vis-www.cs.umass.edu/fddb/).

The goal is for all these models to take an image x and assign a label z to it, where z ∈ {0, 1}
to determine whether the sampled image is a face or not. We apply Bayes’ rule to result in this
simple expression for classifying each image

Pr(z = 1 | x) =
Pr(x | w = 1)Pr(w = 1)∑1
i=0 Pr(x | w = i)Pr(w = i)

(1)

We will use an arbitrary threshold, h to round Pr(z = 1 | x) up or down to conclusively
determine whether it is a face or not (Pr(z = 1 | x) > h → face). Each model will also have
an receiver operating characteristic (ROC) curve, where we sweep h to determine the number
of true and false positive rate.

2 Gaussian Distribution as marginalization

2.1 Algorithm

A single Gaussian distribution can be used to model our image data by estimating the likelihood
function which maximizes our parameters (MLE). The Gaussian, or Normal, distributions
probability density function (pdf) is defined as

p(x) = N (µ, σ2) =
1√

2πσ2
exp− (xn − µ)2

2σ2
(2)

where x represents vector sized N of sampled data xn, µ represents the mean of the sampled
data, σ2 represents the variance of the dataset, and x ∈ Rn, {µ, σ2} ∈ R. The MLE of the
Gaussian pdf is found by maximizing the likelihood function w.r.t. the input parameters µ and
σ2. We take the pdf, set the partial derivatives w.r.t. each parameter to zero, then solve. The
MLE of the mean results in

µ̂ =

∑N
n=1 xn
N

(3)

whereas the MLE of the variance results in

σ̂2 =

N∑
n=1

(xn − µ̂)2

N
(4)

We can apply these results to each individual pixel within the images to prevent the need to
increase the dimensions of our model. Therefore, the single Gaussian model tells us the sample
mean of the images gives the best estimator for the true mean. However, a our best estimator

for the variance does not equal the sample variance s2 =
∑N
n=1

(xn−µ̂)2
N−1 .

1

http://vis-www.cs.umass.edu/fddb/

ECE 763 Project 1 Arpad Voros

2.2 Results

Figure 1: Means and diagonal covariances for n× n× 3, n ∈ {10, 25, 60, 100}, trained on face
and non-face images for a single Gaussian model

The reason why we can go up to n = 100 is due to the fact that the parameter for Σ which
maximizes the likelihood function happens to be the diagonal of the covariance matrix. Mean-
ing, that instead of attempting to calculate the entire covariance matrix, we can simply do
operations element-wise for the covariance calculation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for GSM model - 10 x 10 x 3 pixels - optimal threshold = 0.49699

Figure 2: ROC for the n = 10 image Gaussian single model

The Gaussian single model with resolution 10 had a surprisingly good ROC curve. If many
images are pixelated to the this point, this model seems to be fairly promising.

2

ECE 763 Project 1 Arpad Voros

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for GSM model - 25 x 25 x 3 pixels - optimal threshold = 0.54602

Figure 3: ROC for the n = 25 image Gaussian
single model - bad model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for GSM model - 25 x 25 x 3 pixels - optimal threshold = 0.4673 to 0.5298

Figure 4: ROC for the n = 25 image Gaussian
single model - good model

It was interesting to see the results of the model with resolution of 25. There is a high chance
that I am calculating the ROC curve incorrectly, but my other ROC curves look reasonable so
I am unsure. In the case that I am not, the model shown in Figure 4 perfectly can perfectly
distinguish faces from non-faces at a resolution of 25. But the model seemed to be a hit or miss,
since sometimes when seeing the results it would always guess wrong, like seen in the model
in Figure 3. Either it had a large range for the threshold to maximize the true positives and
minimize false positives, or the model spat out values with an always greater number of false
positives.

I would have tried to show larger images, but anything larger take a long time to run (as a
60× 60× 3 image will have dimensionality of 10800. The covariance matrix used will have to
have 116,640,000 elements, and on a laptop PC one will encounter memory problems).

3 Mixture of Gaussian Distributions

3.1 Algorithm

The Gaussian mixture model is uses a multiple multivariate normal distributions to best esti-
mate where our data lies within some higher dimensional subspace. The multivariate Gaussian
pdf is defined similarly to (2)

p(X) = N (µ,Σ) =
1

(2π)D/2 |Σ|1/2
exp

(
−1

2
(xn − µ)>Σ−1(xn − µ)

)
(5)

where X is a vector of N 1st dimensional data points xn (X ∈ RN×D, xn ∈ RD), µ is
the mean vector of the data points (µ ∈ RD), and Σ is the covariance (positive semi-definite)
matrix of the data set(Σ ∈ RD×D). For the GMM, multiple of these multivariate distributions
are created and fit to the data set. This number will be denoted by k, for a total of K clusters.
We can reconfigure (5) to add this higher dimension K toward the Gaussian parameters µ
and Σ. To find the MLE for each multivariate cluster, we can start by using the posterior on
observation X

3

ECE 763 Project 1 Arpad Voros

p(face | X, θ) =
p(X, face | θ)

p(X)
=

πkN (xn; µk,Σk)∑K
l=1 πlN (xn; µl,Σl)

= rnk (6)

where θ contains the GMM parameters {µ,Σ, π}, face is a binary indicator on whether
or not an image is classified as a face, and π is a vector of normalized weights. Conceptually,
each πk determines how much the k multivariate cluster contributes to the overall model. This
posterior probability of any observed xn is denoted by the scalar rnk. Meaning, we evaluate
the data point xn on each cluster to find the magnitude rnk. This value is used in updating our
means and variances of each randomly initialized cluster to ”hone” in on a likely distribution.
This process is known as the expectation-maximization (EM) algorithm. The process indicated
above has already concluded the E-step.

The M-step, or the maximization of the expectation by finding optimal parameters θ, is
derived by finding the MLE w.r.t. each parameter. For the multivariate normal distribution,
these values are given by

π
[t+1]
k =

∑N
n=1 rnk∑K

l=1

∑N
n=1 rnl

(7)

µ
[t+1]
k =

∑N
n=1 rnkxn∑N
n=1 rnk

(8)

Σ
[t+1]
k =

∑N
n=1 rnk(xn − µ

[t+1]
k)(xn − µ

[t+1]
k)>∑N

n=1 rnk
(9)

By alternating the E and M steps, we update our posterior probabilities as well as our
weights, means, and variances to get a better fit of our GMM to our data. The E and M steps
are then alternated until there is little-to-no change in our parameters θ.

3.2 Results

The covariance matricies Σ continued to collapse or erupt. And in my efforts to keep Σ a
positive-definite matrix (for the calculations to be proper), I kept losing accuracy of my model.
Just 3 EM steps would make the model stall at some, if not all, µ values and my covariance
matricies would be useless. Therefore, everything seen below within this section is only after 1
or 2 EM steps.

Figure 5: Means for n = {20, 25} respectively. Images trained on a 8 cluster GMM

4

ECE 763 Project 1 Arpad Voros

0.1268 0.1695 0.1763 0.0663 0.0563 0.1457 0.1664 0.0928

Figure 6: Means for n = 25. Images trained on a 8 cluster GMM. Weights shown underneath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for GMM model - 25 x 25 x 3 pixels - optimal threshold = 0.4762

Figure 7: Using uniform weights - ROC for the
n = 25 image Gaussian mixture model

corresponding with Fig. 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for GMM model - 25 x 25 x 3 pixels - optimal threshold = 0.4886

Figure 8: Using πk weights - ROC for the
n = 25 image Gaussian mixture model

corresponding with Fig. 6

I accidentally computed the ROC for this model without incorporating the weights, and
when I fixed it to include the weights I noticed something interesting — that when including
the weights the model performs better! You can see that the optimal threshold to maximize
true positives and minimize false positives increases from the time there were uniform weights
applied versus when there were

Figure 9: Means and diagonal covariances respectively for n = 15. Images trained on a 4
cluster GMM. Just showing using to display covariance matricies.

5

ECE 763 Project 1 Arpad Voros

0.1189 0.1584 0.3298 0.1842 0.0453 0.0310 0.1012 0.0313

Figure 10: Means and diagonal covariances respectively for n = 10. Images trained on a 8
cluster GMM. Weights shown underneath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for GMM model - 10 x 10 x 3 pixels - optimal threshold = 0.4675

Figure 11: Using πk weights - ROC for the n = 10 image Gaussian mixture model

4 Student’s t-Distribution as marginalization

4.1 Algorithm

A single t-distribution can be used to model our image data by finding the MLE w.r.t. pa-
rameters µ, Σ, as well as ν degrees of freedom. Unfortunately there is no closed form for the
MLE of the t-Distribution, but it can be calculated using an EM approach. To calculate the
expectation of the distribution over each hidden variable h for the E-step, we result in

E[hn] =
ν +D

ν + (xn − µ)>Σ−1(xn − µ)
(10)

where D is the number of dimensions. We then use this result in our M-step to maximize
the likelihood function across parameters µ and Σ

6

ECE 763 Project 1 Arpad Voros

µ[t+1] =

∑N
n=1 E[hn]xn∑N
n=1 E[hn]

(11)

Σ[t+1] =

∑N
n=1 E[hn](xn − µ[t+1])(xn − µ[t+1])>∑N

n=1 E[hn]
(12)

To optimize the degrees of freedom ν, a linear sweep can be done on the variable. However,
for this project we simply chose the value of ν, which is sub-optimal but still works.

4.2 Results

Figure 12: Means and diagonal covariances for n = 25, trained on face and non-face images
for a single t-Distribution model

The single t-Distribution model using the gamma function Γ[·] for evaluating the effectiveness
of the model. I run into a computational error for this higher dimensional model, where I
calculate

Γ

[
(ν +D)

2

]
where D = the number of dimensions, which in the case above is 25×25×3 = 1875. This results
in an infinite solution in MATLAB, so my ROC curve fails to evaluate the model properly. I
chose ν to be a low value of 2.1 (lowest possible being 2), and still the calculation fails. If I
lower the image resolution to only 10× 10× 3 and ν remains 2.1, the equation above evaluates
to 7.3413× 10262, which is quite large. I do not know how to fix this.

5 Mixture of Student’s t-Distribution

5.1 Algorithm

Similar to the previous section, the mixture of Student’s t-distribution acts like a GMM, but
with a t-Distribution instead. The hyperparameter ν can be tuned to maximize our already
maximized likelihood function, but for the sake of computation time ν is a randomly selected
constant greater than 2. A πk term is introduced, similar to equation (6), but instead of Normal
distributions we use the multivariate Student’s t-distribution

Pr(x) = f(x; µk, Σk, νk) =
Γ
[
ν+D
2

]
(νπ)D/2|Σ|1/2Γ

[
ν
2

] (13)

where we can define

f(x,Ψ) =

K∑
l=1

πlf(x; µl, Σl, νl) (14)

7

ECE 763 Project 1 Arpad Voros

to make a new term γ to be used in each E-step

γnk =
p(X, face | Ψ)

p(X)
=
πkf(xn; µk, Σk, νk)

f(xn,Ψ)
(15)

the M-steps change slightly from equations (11) and (12), where the new steps include γ.
In addition, the weights πk are also updated

π
[t+1]
k =

∑N
n=1 γnk
N

(16)

µ
[t+1]
k =

∑N
n=1 γnkE[hn]xn∑N
n=1 γnkE[hn]

(17)

Σ
[t+1]
k =

∑N
n=1 γnkE[hn](xn − µ[t+1])(xn − µ[t+1])>∑N

n=1 γnk
(18)

5.2 Results

Figure 13: Means for n = 10. Images trained on a 4 cluster TMM

Similar to the GMM, going through multiple EM steps caused my TMM means to converge.
The covariance diagonal matrix calculation updates after each M-step aren’t the most effective,
however for only 1 step we get a decent range of the means. In addition, see the error given
in the single t-Distribution model which prevents me from evaluating the model to get proper
ROC curves.

6 Factor Analysis as marginalization

6.1 Algorithm

Factor analysis essentially sweeps the variance Σ across a higher dimensional plane Φ. This
means that by using just the mean µ and adding/subtracting Φ, the model moves across the
main higher dimensional axis of the variance, so that multiple faces can be modeled by simple
adding/subtracting values from the mean. A Normal distribution is used in evaluating this
quantity, since

Pr(x) = Nx(µ, ΦΦ> + Σ) (19)

Note to professor and/or TA’s: I am already turning this in 2 days late, so I did not complete
this section! I am sorry

8

ECE 763 Project 1 Arpad Voros

7 Heatmaps

For fun, I decided to sweep a window across some images with different models to see how
well they evaluate faces. After seeing the results, I can confirm that there is high probability
I am calculating the ROC curves incorrectly because these results do not look promising.
Nevertheless, these models are extremely simple so I was not expecting the results to be at all
promising.

Figure 14: Sweeping window to test GSM model, trained on n = 25

As you can see, the results are not good at all. Here are some more

Figure 15: Sweeping window to test GSM models, and one TSM model respectively
(n ∈ {25, 10, 20})

9

ECE 763 Project 1 Arpad Voros

8 Conclusion

Most of these models are very computationally intensive, so a regular PC is not effective in
evaluating images. The Gaussian models are the easiest to implement, the t-Distribution models
increase in accuracy and are less susceptible to outliers, and the factor analysis model helps
increase computational efficiency due to a decrease in dimension dependability.

10

	Introduction
	Gaussian Distribution as marginalization
	Algorithm
	Results

	Mixture of Gaussian Distributions
	Algorithm
	Results

	Student's t-Distribution as marginalization
	Algorithm
	Results

	Mixture of Student's t-Distribution
	Algorithm
	Results

	Factor Analysis as marginalization
	Algorithm

	Heatmaps
	Conclusion

